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A B S T R A C T

In this note, we introduce the higher-ordered first and second Gourava indices of a molecular graph. In
particular, we compute the second ordered first and secondGourava indices of some standard class of graphs
and line graph of subdivision graph of 2D-lattice, nanotube and nanotorus of TU C4C8[p,q]. Furthermore,
we study the linear regression analysis of the second ordered first and second Gourava indices with the
entropy, acentric factor, enthalpy of vaporization and standard enthalpy of vaporization of an octane isomers.
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1 INTRODUCTION
Chemical graph theory is a branch of mathematical chemistry, which has significant impact on the improvement of the
chemical sciences. In molecular graph, graph is used to represent a molecule by considering the atoms as the vertices and
molecular bonds as the edges. A topological index is a molecular descriptor that is determined based on the molecular graph
of a chemical compound. For more details on topological indices refer [1–6]. Let G = (V,E)be such a graph with V as vertex
set and E as edge set and |V |= n, |E|= m. The degree dG(v) of a vertex v ∈V (G) is the number of edges incident to it in G.

V. R. Kulli [7] introduced the first and second Gourava indices of a molecular graph as follows

GO1(G) = ∑uv∈E(G) [dG(u)+dG(v)+(dG(u) ·dG(v))] (1.1)

GO2(G) = ∑uv∈E(G) [(dG(u)+dG(v)) · (dG(u) ·dG(v))] (1.2)

Motivated by the chemical applications of higher-ordered connectivity index (or Randić index) [8], we introduce the
higher-ordered first and second Gourava indices of Eqs. (1.1) and (1.2) as

α GO1(G) = ∑
u1u2···uα+1∈Eα (G)

[dG (u1)+dG (u2) · · ·+dG (uα+1)) +(dG (u1) ·dG (u2) · · ·dG (uα+1))] (1.3)
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α GO2(G) = ∑
u1u2···uα+1∈Eα (G)

[(dG (u1)+dG (u2) · · ·+dG (uα+1)) ·(dG (u1) ·dG (u2) · · ·dG (uα+1))] . (1.4)

Here, Eα (G) denote the path of lengthα in a graph G, for example E1 (G) and E2 (G) are
path of length 1 and 2 in a graph G respectively.
By putting α = 2 in Eqs. (1.3) and (1.4), we get the second ordered first and second Gourava indices as follows

2GO1(G) = ∑
u1unu2∈En(G)

[dG (u1)+dG (u2)+dG (u3) +(dG (u1) ·dG (u2) ·dG (u3))] (1.5)

2GO2(G) = ∑
u1unuR∈E2(G)

[(dG (u1)+dG (u2)+dG (u3)) ·(dG (u1) ·dG (u2) ·dG (u3))] . (1.6)

2 ESTIMATING THE SECOND ORDERED FIRST AND SECOND GOURAVA INDICES OF GRAPHS
In this section, we compute the second ordered first and second Gourava indices of path graph, wheel graph Pn, complete
bipartite graph Wn+1 and Kr,s and r - regular graphs. Also, obtained bounds in terms of minimum vertex degree, size and
order.

Remark 2.1. [9] For a graph G onm edges, the number of paths of length 2 in G is−m+ 1
2 M1(G).

Theorem 2.1. Let Pn be the path on n ≥ 4 vertices. Then
2GO1 (Pn) = 14n−38
2GO2 (Pn) = 48n−152.
Proof. For a path Pn on n ≥ 4 vertices each vertex is of degree either 1 or 2. The partition of E2 (Pn) is given as follows:∣∣E(1,2,2)

∣∣= ∣∣u1u2u3 ∈ E2 (Pn) : dpn (u1) = 1,dpn (u2) = 2,dpn (u3) = 2
∣∣= 2,∣∣E(2,2,2)

∣∣= ∣∣u1u2u3 ∈ E2 (Pn) : dpn (u1) = 2,dpn (u2) = 2,dpn (u3) = 2
∣∣= (n−4).

From, partition of E2 (Pn) and Eqs. (1.5) and (1.6), we get the desired result.
Theorem 2.2. LetWn+1 be the wheel on n ≥ 4 vertices. Then

2GO1 (Wn+1) =
10n3 +36n2 +90n

2

2GO2 (Wn+1) =
9n4 +81n3 +162n2 +486n

2
.

Proof. For a wheelWn+1 on n ≥ 3 vertices each vertex is of degree either 3 or n. The partition of E2 (Wn+1) is given as follows:

∣∣E(3,n,3)
∣∣= ∣∣u1u2u3 ∈ E2 (Wn+1) : dWn+1 (u1) = 3,dWn+1 (u2) = n,dWn+1 (u3) = 3

∣∣ =
n2 +3n

2

∣∣E(3,3,3)
∣∣= ∣∣u1u2u3 ∈ E2 (Wn+1) : dwn+1 (u1) = 3,dWn+1 (u2) = 3,dWn+1 (u3) = 3

∣∣= n

From, partition of E2 (Wn+1) and Eqs. (1.5) and (1.6), we get the desired result.
Theorem 2.3. Let Kr,s be the complete bipartite graph on r ≥ 2,s ≥ 3 vertices. Then

2GO1 (Kr,s) = r
(

s
2

)(
r2s+2r+ s

)
+ s

(
r
2

)(
s2r+2s+ r

)
,

2GO2 (Kr,s) = r3s
(

s
2

)
(2r+ s)+ s3r

(
r
2

)
(2s+ r).

Proof. For a complete bipartite graph Kr,s on r ≥ 2,s ≥ 3 vertices each vertex is of degree either 3 or (n-1). The partition of
E2 (Kr,s) is given as follows:

∣∣E(r,s,r)
∣∣= |u1u2u3 ∈ E2 (Kr,s) : dKrs (u1) = r,dKrs (u2) = s,dKrs (u3) = r| = r

(
s
2

)
,
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∣∣E(s,r,s)
∣∣= |u1u2u3 ∈ E2 (Kr,s) : dKrs (u1) = s,dKrs (u2) = r,dKrs (u3) = s| = s

(
r
2

)
.

From, partition of E2 (Kr,s) and Eqs. (1.5) and (1.6), we get the desired result.
Theorem 2.4. Let G be the r - regular graph on n vertices

2GO1(G) =
nr(r−1)

(
r3 +3r

)
2

2GO2(G) =
3nr5(r−1)

2
.

Proof. Since G is the r - regular graph, the path of degrees (r, r, r) appears nr(r−1)
2 times in G. Therefore by Eqs. (1.5) and (1.6),

we get the required result.
FromTheorem 2.4, we obtain the following results.
Corollary 2.5.If Cn is a cycle on n ≥ 3 vertices. Then

2GO1 (Cn) = 14n
2GO2 (Cn) = 48n

Corollary 2.6. If Kn is a complete graph on n ≥ 4 vertices. Then

2GO1 (Kn) =
n(n−1)(n−2)

(
n3 −3n2 +6n−4

)
2

,

2GO2 (Kn) =
3n(n−2)(n−1)5

2
.

Lemma 2.7. [10] Let G be the graph with n vertices andm edges m > 0. Then

M1(G)≤ m
(

2m
n−1

+n−2
)
. (2.1)

Lemma 2.8. [11] Let G be the graph with n vertices andm edges, m > 0. Then the equality

M1(G) = m
(

2m
n−1

+n−2
)
.

holds if and only if G is isomorphic to star graph Sn or Kn or Kn−1 ∪K1.
Theorem 2.9. Let G be a graph of order n and size m > 0. Then

2GO1(G)≤
(
n3 −3n2 +6n−4

)
·m

(
m

n−1
+

n−4
2

)
Equality holds if and only if G is isomorphic to Kn.

Proof: By using Eqn. (1.5)

2GO1(G) = ∑
u1unu2∈En(G)

[dG (u1)+dG (u2)+dG (u3)

+ (dG (u1) ·dG (u2) ·dG (u3))]

≤ ∑
u1unux∈En(G)

(
n3 −3n2 +6n−4

)
=
(
n3 −3n2 +6n−4

)(1
2

M1(G)−m
)
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By Eqn. (2.1) we get

≤
(
n3 −3n2 +6n−4

)(1
2

m
(

2m
n−1

+n−2
)
−m

)
=
(
n3 −3n2 +6n−4

)
·m

(
m

n−1
+

n−4
2

)
.

Equality holds if and only if G is isomorphic to Kn.
Theorem 2.10. Let G be a graph of order n and sizem. Then

2GO2(G)≤ 3m(n−1)4
(

m
n−1

+
n−4

2

)
.

Equality holds if and only if G is isomorphic to Kn.
Proof. The Proof follows exactly as mentioned in the Proof of Theorem 2.9.
Lemma 2.11. [11] Let G be a graph of order n and sizem. Then

2GO2(G)≤ 3m(n−1)4
(

m
n−1

+
n−4

2

)
.

and the equality holds if and only if the difference of the degrees of any two vertices of graph G is at most one.
Theorem 2.12. Let G be a graph of order n, sizem with minimum vertex degree δ . Then

2GO1(G)≥ 2mpδ
(
3+δ 2)− pnδ

(
3+δ 2

)
(p+1)

2
where p =

⌊
2m
n

⌋
Equality holds if and only if G is a regular graph.

Proof: By using Eqn. (1.5)

2GO1(G) = ∑
u1unuΩ∈En(G)

[dG (u1)+dG (u2)+dG (u3)

+ (dG (u1) ·dG (u2) ·dG (u3))]

≥ ∑
u1unu2∈En(G)

(
3δ +δ 3)

=δ
(
3+δ 2)(−m+

M1(G)

2

)
By Lemma 2.11, we get

≥ δ
(
3+δ 2)(−m+m(2p+1)− pn(1+ p)

2

)
= 2mpδ

(
3+δ 2)− pnδ

(
3+δ 2

)
(p+1)

2
.

Equality holds if and only if G is a regular graph.
Theorem 2.13. Let G be a graph of order n, sizem with minimum vertex degree δ . Then

2GO2(G)≥ 6mpδ 4 − 3δ 4 pn(p+1)
2

where p =

⌊
2m
n

⌋
Equality holds if and only if G is a regular graph.

Proof. The Proof follows exactly as mentioned in the Proof of Theorem 2.12.
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Figure 1: (a) 2D-lattice of TU C4C8[4,3]; (b) TU C4C8[4,3]nanotube; (c) TU C4C8[4,3]nanotorus.

Table 1: 1: Number of vertices and edges.
Graph Number of vertices Number of edges
2D-lattices of TUC4C8[p,q] 4qp 6qp − q − p
TUC4C8[p,q] nanotube 4qp 6qp − p
TUC4C8[p,q] nanotorus 4qp 6qp

Figure 2: (a) Subdivision graph of 2D-lattice of TU C4C8[4,3]; (b) Line graph of the subdivision graph of 2D-lattice of TU C4C8[4,3].

Table 2: Partition of paths of length 2 of the graph.
(dX (u),dX (v),dX (w)) where uvw ∈ E2(X) Number of paths of length 2 in X
(2,2,2) 8
(2,2,3) 4(p+q−2)
(3,3,2) 8(q+ p−2)
(3,3,3) (36qp−26p−26q+16)

3 COMPUTING THE SECOND ORDERED FIRST AND SECOND GOURAVA INDICES OF SOME FAMILIES
OF GRAPHS
In this section, we take into account the graph 2D-lattice, nanotube and nanotorus of TU C4C8[p,q], where p is the number
of squares in a row and qis the number of rows of squares [12–15].These graphs are shown in Figure 1.The Table 1 shows the
vertex set and edge set.

Lemma 3.1. [13] Let X be the line graph of the subdivision graph of 2D - Lattice of TU C4C8[4,3]. Then

M1(X) = 108pq−38p−38q

Theorem 3.2 . Let X be the line graph of the subdivision graph of 2D - Lattice of TU C4C8[4,3] . Then

2GO1(X) = 1296pq−652(p+q)+120

2GO2(X) = 8748pq−4830(p+q)+1296

Proof. From the Remark 2.1 and Lemma 3.1, it is clear that, total number of paths of length 2 in X is 36pq−14p−14q. From
Eqs. (1.5), (1.6) and Table 2, we deduce
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2GO1(X) = ∑
u1unux∈En(G)

[dG (u1)+dG (u2)+dG (u3)+(dG (u1) ·dG (u2) ·dG (u3))]

= 8(6+8)+4(p+q−2)(7+12)+8(q+ p−2)(8+18)
+(36qp−26p−26q+16)(9+27)
= 1296pq−652(p+q)+120

2GO2(X) = ∑
u1unun∈En(G)

[(dG (u1)+dG (u2)+dG (u3)) · (dG (u1) ·dG (u2) ·dG (u3))]

= 8(6 ·8)+4(p+q−2)(7 ·12)+8(q+ p−2)(8 ·18)
+(36qp−26p−26q+16)(9 ·27)
= 8748pq−4830(p+q)+1296.

Figure 3: (a) Subdivision graph of of TU C4C8[4,3] nanotube; (b) Line graph of the subdivision graph of TU C4C8[4,3] of nanotube.

Lemma 3.3 . [13] Let Y be the line graph of the subdivision graph of TU C4C8[4,3] nanotube. Then

M1(Y ) = 108pq−38p

Table 3: Partition of paths of length 2 of the graph.
(dY (u),dY (v),dY (w)) where uvw ∈ E2(Y ) Number of paths of length 2 in Y
(2,2,3) 4p
(3,3,2) 8q
(3,3,3) (36pq - 26p)

Theorem 3.4 . Let Y be the line graph of TU C4C8[4,3] the subdivision graph of nanotube. Then

2GO1(Y ) = 1296pq−860p+208q,
2GO2(Y ) = 8748pq−5982p+1152q.

Proof. From the Remark 2.1 and Lemma 3.3, it is clear that, total number of paths of length 2 in Y is 36pq. From Eqs. (1.5),
(1.6) and Table 3, we get the required results.

Figure 4: (a) Subdivision graph of TU C4C8[4,3] of nanotorus; (b) Line graph of the subdivision graph of TU C4C8[4,3] of nanotorus.
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Theorem 3.5. Let Z be the line graph of the subdivision graph of TU C4C8[p,q] nanotorus. Then

2GO1(Z) = 108n,
2GO2(Z) = 729n.

Proof. The graph Z is 3-regular graph, by usingTheorem 2.4, we obtain the desired result.

4 CHEMICAL APPLICABILITY OF THE SECOND ORDERED FIRST AND SECOND GOURAVA INDICES
In this section, we establish the linear regression analysis of the second ordered first and second Gourava indices with the
entropy, acentric factor, enthalpy of vaporization and standard enthalpy of vaporization of an octane isomers.

A linear regression model with four physical characteristics based on the second ordered first and second Gourava indices
is discussed in this section. Physical parameters of octane isomers, such as entropy (S), acentric factor (AF), enthalpy of
vaporisation (HVAP), and standard enthalpy of vaporisation (DHVAP), have showed a strong relationship with the indices
studied. The second ordered first and second Gourava indices is tested for the octane isomers, which can be found at https:/
/www.moleculardescriptors.eu/dataset.htm. First and second Gourava indices are computed and tabulated in column 6 and
7 of Table 4. The linear regression models for S, AF, HVAP and DHVAP are fitted using the least squares approach utilising
data from Table 4.

The fitted models for the second ordered first Gourava index 2GO1(G) are

S = 120.66037(±3.36250)−0.12079(±0.02603)2GO1(G) (4.1)

Acentric Factor = 0.4751946(±0.0191537)−0.0011054(±0.0001483)2GO1(G) (4.2)

HVAP = 75.05079(±1.75198)−0.04664(±0.01356)2GO1(G) (4.3)

DHVAP = 10.327506(±0.310790)−0.009516(±0.002406)2GO1(G) (4.4)

The fitted models for the second ordered second Gourava index 2GO2(G) are

S = 113.670043(±2.948517)−0.016511(±0.005625)2GO2(G) (4.5)

Acentric Factor = (4.176e−01)(±1.915e−02)− (1.638e−04)(±3.654e−05)2GO2(G) (4.6)

HVAP = 72.264706(±1.425287)−0.006203(±0.002719)2GO2(G) (4.7)

DHVAP = 9.7605648(±0.2621262)−0.0012685(±0.0005001)2GO2(G) (4.8)
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Table 4:The corresponding values of the 2GO1(G) and 2GO2(G)of octane isomers and experimental values of S, AF, HVAP and DHVAP.
Alkane S AF HVAP DHVAP 2GO1(G) 2GO2(G)

n-Octane 111.700 0.398 73.190 9.915 74 232
2-Methylheptane 109.800 0.378 70.300 9.484 88 287
3-Methylheptane 111.300 0.371 71.300 9.521 97 344
4-Methylheptane 109.300 0.372 70.910 9.483 99 364
3-Ethylhexane 109.400 0.362 71.700 9.476 109 428
2,2-Dimethylhexane 103.400 0.339 67.700 8.915 122 436
2,3 -Dimethylhexane 108.000 0.348 70.200 9.272 122 488
2,4 -Dimethylhexane 107.000 0.344 68.500 9.029 113 423
2,5 -Dimethylhexane 105.700 0.357 68.600 9.051 102 342
3,3-Dimethylhexane 104.700 0.323 68.500 8.973 142 580
3,4-Dimethylhexane 106.600 0.340 70.200 9.316 132 558
2-Methyl-3-ethylpentane 106.100 0.332 69.700 9.209 135 585
3-Methyl-3-ethylpentane 101.500 0.307 69.300 9.081 162 720
2,2,3-Trimethylpentane 101.300 0.301 67.300 8.826 167 744
2,2,4-Trimethylpentane 104.100 0.305 64.870 8.402 140 543
2,3,3-Trimethylpentane 102.100 0.293 68.100 8.897 176 807
2,3,4 -Trimethylpentane 102.400 0.317 68.370 9.014 148 651
2,2,3,3 -Trimethylpentane 93.060 0.255 66.200 8.410 144 468

Table 5: Correlation coefficient and residual standard error regression model for the 2GO1(G) index.
Physical Property Absolute Value of the correlation coefficient Residual standard error
Acentric factor 0.8811943 0.01731
Entropy 0.7574559 3.039
HVAP 0.6519765 1.584
DHVAP 0.7031612 0.2809

Table 6: Correlation coefficient and residual standard error regression model for the 2GO2(G) index.
Physical Property Absolute Value of the correlation coefficient Residual standard error
Acentric factor 0.7462292 0.02438
Entropy 0.5916016 3.753
HVAP 0.4953769 1.814
DHVAP 0.5355184 0.3337
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Figure 5: Scatter diagram of physical properties S, AF, HVAP and DHVAP with the 2GO1(G) index.

Figure 6: Scatter diagram of physical properties S, AF, HVAP and DHVAP with the 2GO2(G) index.

Note:The values in the brackets of equations (4.1)-(4.8), are the corresponding standard errors of the regression coefficients.
Tables 5 and 6 and Figures 5 and 6 represents the residual standard error and correlation coefficient for the regression models
of four physical properties with 2GO1(G) and 2GO2(G) indices. From Table 5 and Figure 5, we can observe that 2GO1(G)
index correlates with the acentric factor and the good correlation coefficient |r| = 0.8811943. Also, the 2GO1(G)index has
correlation coefficient |r| = 0.7574559 with entropy, |r| = 0.7031612 with DHVAP and |r| = 0.6519765 with HVAP. From
Table 6 and Figure 6, we can observe that 2GO2(G) index correlates with the acentric factor and the correlation coefficient
|r| = 0.7462292. Also, the 2GO2(G) index has correlation coefficient |r| = 0.5916016 with entropy, |r| = 0.5355184 with
DHVAP and |r|= 0.4953769 with HVAP. Among, second ordered first Gourava index 2GO1(G) and second ordered second
Gourava index 2GO2(G), the second ordered first Gourava index 2GO1(G) has good correlation with the physical properties
of octane isomers.
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