Karnatak University Journal of Science 54(3), (2023), 25-28

Karnatak University Journal of Science

ISSN: 0075-5168

Research Article

On γ-Preregular P-Open Set

J B Toranagatti^{1,*}

¹Department of Mathematics, Karnatak University's Karnatak Arts College, Dharwad-580 001

ARTICLE INFO	A B S T R A C T
Article history: Received 26.04.2023	As a generalization of open sets in topological spaces, we use the notions of γ -preopen and γ -preclosed sets [1] to introduce and study the notions of γ -prp-open sets.
Accepted 07.07.2023 Published 01.11.2023	Keywords: γ -open; γ -preopen; γ -preclosed; γ -prp-open; γ -ppr-closed
* Corresponding author. J B Toranagatti	
jagadeeshbt2000@gmail.com https://doi.org/ 10.61649/kujos/v54i3.torangatti	

1 INTRODUCTION

Throughout the present paper, we will denote (X, τ) as a topological space (briefly, TS). The concept of operations α on topological spaces was introduced by Kasahara [1]. Ogata [2] called the operation α as γ -operation and introduced the notion τ_{γ} which is the collection of all γ -open sets in a topological space. Recently, Sabir Hussain introduced and studied the properties of γ -preopen and γ -b-open sets in topological spaces.

In this paper, we introduce and explore generalized open sets namely γ -prp- open sets in topological spaces.

2 PRELIMINARIES

Definition 2.1 [3] Let (X,τ) be a TS.An operation γ on a topology τ is a mapping from τ to P(X) with $N \subseteq N^{\gamma}$, for each $N \in \tau$, where N^{γ} denotes the value of γ at N. This operation is denoted by $\gamma: \tau \longrightarrow P(X)$.

Its complement is called γ -closed.

Definition 2.3 [2] Let $N \subseteq X$, then γ -interior of N, denoted by int_{γ} (N) is defined as int_{γ} (N) = { $p \in N$: $p \in G \in \tau$ and $G^{\gamma} \subseteq N$ for some G }.

Definition 2.4 [2] Let $N \subseteq X$, then γ -closure of N, denoted by cl_{γ} (M) is defined as cl_{γ} (N) = { $p \in X$: $p \in U \in \tau$ and U^{γ}

 \cap N $\neq \phi$ for all U }.

Definition 2.5 [2] An operation γ on τ is regular if for any open nbds L,M of each $p \in X$, there exists an open nbd N of p such that $L^{\gamma} \cap M^{\gamma} \subseteq N^{\gamma}$.

Definition 2.6 A set $M \subseteq X$ is called

(i) γ -preclosed [1] if $cl_{\gamma}(int_{\gamma}(M)) \subseteq M$ and γ -preopen if $M \subseteq int_{\gamma}(cl_{\gamma}(M))$.

(ii) γ^* -regular-closed [4] if M=cl_{γ} (int_{γ} (M)) and γ^* - regular-open if M = int_{γ} (cl_{γ} (M)).

(iii) γ -b-closed [1] $cl_{\gamma}(int_{\gamma}(M)) \cap int_{\gamma}(cl_{\gamma}(M)) \subseteq M$ and γ -b-open if $M \subseteq cl_{\gamma}(int_{\gamma}(M) \cup int_{\gamma}(cl_{\gamma}(M))$.

The family of γ -open(resp., γ -closed, γ -preopen, γ -preclosed, γ^* -regular open) sets of (X, τ) is denoted by τ_{γ} (resp.,C_{γ} (X), PO_{γ} (X), PC_{γ} (X), RO_{γ^*} (X)).

Definition 2.7 [1] In (X, τ) , let $M \subseteq X$. Then

(1) γ -pre-closure of M, denoted by τ_{γ} -pcl_{γ} (M) is defined as pcl_{γ} (M) = \cap {U: M \subseteq U and U^c \in PO_{γ} (X) }.

(2) γ -pre-interior of M, denoted by pint_{γ} (A) is defined as pint_{γ} (M) = \cup {H: H \subseteq M and H \in PO_{γ} (X) }.

Theorem 2.8 [1] In (X, τ) , let $M \subseteq X$. Then:

(1) $pcl_{\gamma}(M) = M \cup cl_{\gamma}(int_{\gamma}(M))$ and $pint_{\gamma}(M) = M \cap int_{\gamma}(cl_{\gamma}(M))$.

Karnatak University Journal of Science

(2) $pcl_{\gamma}(pint_{\gamma}(M)) = pint_{\gamma}(M) \cup cl_{\gamma}(int_{\gamma}(M))$ and $\operatorname{pint}_{\gamma}(\operatorname{pcl}_{\gamma}(M)) = \operatorname{pcl}_{\gamma}(M) \cap \operatorname{int}_{\gamma}(\operatorname{cl}_{\gamma}(M)).$ (3) $\operatorname{Pint}\gamma(\operatorname{pcl}\gamma(M)) = \operatorname{pint}\gamma(\operatorname{bcl}\gamma(M)) = \operatorname{bcl}\gamma(\operatorname{pint}\gamma(M)).$ **3** γ-PREREGULAR P-OPEN SETS **Definition 3.1** A subset M of a TS (X, τ) is said to be γ -preregular p- open(briefly, γ -prp-open) if M = pint_{γ} (pcl_{γ} (M)). The class of γ -prp-open in (X, τ) will be denoted by $PRPO_{\gamma}(X).$ **Definition 3.2** In (X, τ) , let $M \sqsubseteq X$. Then M is called a γ *prp-closed set if* M^{c} is γ -prp-open. Equivalently, M is called γ -prp-closed set if M = $pcl_{\gamma}(pint_{\gamma}(M)).$

The class of γ -prp-closed sets in (X, τ) will be denoted by $PRPC_{\gamma}(X).$

Example 3.3 Let $\tau = \{X, \phi, \{k_1\}, \{K_2\}, \{k_1, k_2\}, \{k_1, k_3\}\}$ be a topology on $X = \{k_1, k_2, k_3\}$

For $k_2 \in \{X \text{ and } M \in \tau, \text{define } \gamma: \tau \to P(X) \text{ by }$ M, if k $2 \in M$ $\gamma(\mathbf{M}) = \begin{cases} m, n \in \mathbb{R} \\ cl(M), \text{ if } k2 \notin \mathbf{M} \\ cl(M) = k \end{cases}$

Then $\tau_{\gamma} = \{X, \phi, \{k_1\}, \{k_1, k_2\}, \{k_1, k_3\}\}.$

 $PO_{\gamma}(X) = \{X, \phi, \{k_1\}, \{k_2\}, \{k_1, k_2\}, \{k_1, k_3\}, \{k_2, k_3\}\}.$

 $PRPO_{\gamma}(X) = \{X, \phi, \{k_1\}, \{k_2\}, \{k_1, k_3\}, \{k_2, k_3\}\}.$

Theorem 3.4 If M is γ -prp-open in (X, τ), then it is γ preopen (hence γ - b-open) but not conversely.

Proof:Let M be γ -prp-open.Then M = pint_{γ} (pcl_{γ} (M)). Hence $pint_{\gamma}(M) = pint_{\gamma}(pint_{\gamma}(pcl_{\gamma}(M)))$

 $= \operatorname{pint}_{\gamma} (\operatorname{pcl}_{\gamma} (M))$

= M.

Thus M is γ -preopen.

Example 3.5 In the Example 3.3, $\{k_1, k_2\}$ is a γ -preopen set but not a γ - prp-open set.

Theorem 3.6 If M is γ -prp-open in (X, τ), then it is γ -bclosed but not conversely.

Proof:Let M be γ -prp-open.Then

 $M = pint_{\gamma} (pcl_{\gamma} (M)).$

= bcl_{γ} (pint_{γ} (M)) (by Theorem 2.8(iii)).

= bcl_{γ} (M)(by Theorem 3.4)

Thus M is γ -b-closed.

Example 3.7 In the Example 3.3, $\{k_3\}$ is a γ -b-closed set but not a γ -prp- open set.

Remark 3.8 The class of γ -prp-open sets is not closed under finite union as well as finite intersection. It will be shown in the following example.

Example 3.9 (1)In Example 3.3,let $C = \{k_1\}$ and $D = \{k_2\}$ then C,D \in PRPO_{γ} (X) but P \cup Q = {k₁,k₂} \notin PRPO_{γ} (X).

(2) In Example 3.3, let $S = \{k_1, k_3\}$ and $T = \{k_2, k_3\}$ then S, T \in PRPO_{γ} (X) but S \cap T = {k₃ } \notin PRPO_{γ} (X).

Theorem 3.10 In (X, τ), let R,S \subseteq X, then the following results hold:

(i) If $R \subseteq S$, then pint_{γ} (pcl_{γ} (R)) \subseteq pint_{γ} (pcl_{γ} (S)).

(ii) If $R \in PO_{\gamma}(X)$, then $R \subseteq pint_{\gamma}(pcl_{\gamma}(R))$.

(iii) If $R \in PC_{\gamma}(X)$, then $pcl_{\gamma}(pint_{\gamma}(R)) \subseteq R$.

(iv) pint_{γ} (pcl_{γ} (R)) is γ -prp-open.

Karnatak University Journal of Science

(v) If $R \in PC_{\gamma}$ (X), then pint_{γ} (R) is γ -prp-open. (vi) If $R \in PO\gamma(X)$, then $pcl\gamma(R)$ is γ -prp-open. **Proof:** (i)Clear. (ii) Since $R \subseteq pcl_{\gamma}(R)$ and let $R \in PO_{\gamma}(X)$, then $R \subseteq pint_{\gamma} (pcl_{\gamma} (R)).$ (iii) Let $R \in PC_{\gamma}(X)$. Since $pint_{\gamma}(R) \subseteq R$, then pcl_{γ} (pint_{γ} (R) \subseteq R.

(iv) We have

 $\operatorname{pint}_{\gamma}(\operatorname{pcl}_{\gamma}(\operatorname{pint}_{\gamma}(\operatorname{pcl}_{\gamma}(\operatorname{R})) \subseteq \operatorname{pint}_{\gamma}(\operatorname{pcl}_{\gamma}(\operatorname{pcl}_{\gamma}(\operatorname{R})) =$ $\operatorname{pint}_{\gamma}(\operatorname{pcl}_{\gamma}(\mathbf{R}))$

 $\operatorname{pint}_{\gamma}(\operatorname{pcl}_{\gamma}(\operatorname{pint}_{\gamma}(\operatorname{pcl}_{\gamma}(\operatorname{R}))))$ and \geq $pint_{\gamma} (pint_{\gamma} (pcl_{\gamma} (A)))$ = $pint_{\gamma} (pcl_{\gamma} (R))$. Hence $\operatorname{pint}_{\gamma}(\operatorname{pcl}_{\gamma}(\operatorname{pint}_{\gamma}(\operatorname{pcl}_{\gamma}(\operatorname{R}))) = \operatorname{pint}_{\gamma}(\operatorname{pcl}_{\gamma}(\operatorname{R})).$

Suppose that $R \in PC_{\gamma}(X)$. By (iii), (v) $\operatorname{pint}_{\gamma}(\operatorname{pcl}_{\gamma}(\operatorname{pint}_{\gamma}(\operatorname{R}))\subseteq \operatorname{pint}_{\gamma}(\operatorname{R})$. On the other hand, we have $\operatorname{int}_{\gamma}(R) \subseteq \operatorname{pcl}_{\gamma}(\operatorname{pint}_{\gamma}(R))$.

So that $pint_{\gamma}(R) \subseteq pint_{\gamma}(pcl_{\gamma}(pint_{\gamma}(R)))$. Therefore $\operatorname{pint}_{\gamma}(\operatorname{pcl}_{\gamma}(\operatorname{pint}_{\gamma}(\operatorname{R})) = \operatorname{pint}_{\gamma}(\operatorname{R})$. This shows that $\operatorname{pint}_{\gamma}(\operatorname{R})$ is γ -prp-open.

(vi) Similar to (v).

Theorem 3.11 In (X,τ) , let $M \subseteq X$, the following are equivalent:

(i) M is γ -prp-open;

(ii) $M = pcl_{\gamma}(M) \cap int_{\gamma}(cl_{\gamma}(M));$

(iii) M = [M \cup cl_{γ} (int_{γ} (M))] \cap int_{γ} (cl_{γ} (M));

(iv) $M = pint_{\gamma} ((bcl_{\gamma} (M))).$

Proof:It follows from Theorem 2.8

Theorem 3.12 In (X, τ) , let $N \subseteq X$. Then N is γ -prp-open if and only if it is γ -preopen and γ -b-closed.

Proof: From the theorems 3.4 and 3.6, we have that every γ -prp-open set is γ -preopen and γ -b-closed.

Conversely, let N be γ -preopen and γ -b-closed, then

 $pint_{\gamma}(N) = N$ and $bcl_{\gamma}(N) = N$.

By Theorem 2.8 (iii), $pint_{\gamma} (pcl_{\gamma} (N) = pint_{\gamma} (bcl_{\gamma} (N))$

 $= pint_{\gamma}(N)$

= N.

Theorem 3.13 If N is γ -preclosed set in (X, τ), then the following are equivalent:

(1) N is γ -prp-open;

(2) N is γ -preopen.

Proof:(1) \rightarrow (2):It follows from the Theorem 3.4

(2) \rightarrow (1): By hypothesis and (ii), we have pcl_{γ} (N) = N and pint_{γ} (N) = N

Then, $pint\gamma(pcl\gamma(N)) = pint\gamma(N) = N$

Theorem 3.14 If N is γ -prp-open and a γ -closed set of a space (X, τ), then N is γ -clopen.

Proof:By hypothesis, $N = pint_{\gamma} (pcl_{\gamma} (N))$ and M = $cl_{\gamma}(N).$

By Theorem 2.8(ii), $N = pint_{\gamma} (pcl_{\gamma} (N))$

 $= pcl_{\gamma}(N) \cap int_{\gamma}(cl_{\gamma}(N))$

 $= pcl_{\gamma}(N) \cap int_{\gamma}(N)$

 $= int_{\gamma} (N).$

Therefore, N is γ -clopen.

Theorem 3.15 If N is γ -prp-open and a γ -open set in (X,τ) , then N is γ^* -regular open. **Proof:** Since N is γ -prp-open and γ -open, then we have $N = pint_{\gamma} (pcl_{\gamma} (N))$ and $N = int_{\gamma} (N)$. By Theorem 3.11, $N = pint_{\gamma} (pcl_{\gamma} (N))$ $= [N \cup cl_{\gamma} (int_{\gamma} (N))] \cap int_{\gamma} (cl_{\gamma} (N))$ $= [N \cup cl_{\gamma}(N)] \cap int_{\gamma}(cl_{\gamma}(N))$ $= cl_{\gamma}(N) \cap int_{\gamma}(cl_{\gamma}(N))$ $= int_{\gamma} (cl_{\gamma} (N)).$ Therefore, N is γ^* -regular open **Definition 3.16** [4] In (X, τ) , let $N \subseteq X$. Then N is called a γ^* -dense set if $cl_{\gamma}(N) = X$. **Theorem 3.17** If N is γ -prp-open and a γ^* -dense set in (X,τ) ,then N is γ -preclosed. **Proof:** Since N is γ -prp-open and γ^* -dense, then N = $pint_{\gamma} (pcl_{\gamma} (N))$ and $cl_{\gamma} (N) = X$. By Theorem 3.11, $N = pint_{\gamma} (pcl_{\gamma} (N))$ $= pcl_{\gamma}(N) \cap int_{\gamma}(cl_{\gamma}(N))$ $= pcl_{\gamma}(N) \cap int_{\gamma}(X)$ $= pcl_{\gamma}(N) \cap X$ $= pcl_{\gamma}(N).$ Therefore, N is γ -preclosed. **Definition 3.18** In (X, τ),let N \subseteq X.Then N is called a γ rare set if $int_{\gamma}(N) = \phi$. **Theorem 3.19** If N is γ -preopen and a γ -rare set in (X,τ) , then N is γ -prp-open. **Proof:**Let N be γ -prp-open and γ -rare set, we have $N = N \cap int_{\gamma} (cl_{\gamma} (N)) and int_{\gamma} (N) = \phi$. By Theorem 2.8, $pint_{\gamma}(pcl_{\gamma}(N)) = [N \cup cl_{\gamma}(int_{\gamma}(N))] \cap$ $\operatorname{int}_{\gamma}(\operatorname{cl}_{\gamma}(N)) = [N \cup \operatorname{cl}_{\gamma}(\phi)] \cap \operatorname{int}_{\gamma}(\operatorname{cl}_{\gamma}(N))$ $= [N \cup \phi] \cap \operatorname{int}_{\gamma} (\operatorname{cl}_{\gamma} (N))$ = N (as N is γ -preopen). Therefore, N is γ -prp-open. **Theorem 3.20** In (X, τ), N is γ -open subset of X, then the following are equivalent: (1) Is γ -prp-open; (2) N is γ^* -regular open **Proof:** (1) \rightarrow (2):Follows from Theorem 3.15 (2) \rightarrow (1):By hypothesis and (2),we have int_v (N) = N and $int_{\gamma}(cl_{\gamma}(N)) = N$. By Theorem 2.8, $pint_{\gamma}(pcl_{\gamma}(N)) = [N \cup cl_{\gamma}(int_{\gamma}(N))] \cap$ $int_{\gamma}\left(cl_{\gamma}\left(N\right)\right)$ $= cl_{\gamma}(N) \cap N \operatorname{pint}_{\gamma}(\operatorname{pcl}_{\gamma}(N)) = N.$ Therefore, N is γ -prp-open. **Definition 3.21** [4] In (X,τ) , let $N \subseteq X$. Then N is called γ^{*} -submaximal if every γ^{*} -dense subset of X is γ -open. **Theorem 3.22** If every γ -preopen set is γ -open, then (X, τ) is γ^* -submaximal. **Proof:** Let M be a γ -dense subset of X. Then int_{γ} (cl_{γ} (M) = X. So that $M \subseteq int_{\gamma}$ (cl_{γ} (M)), M is γ -preopen. Therefore, M is γ -open. **Theorem 3.23** In (X, τ), let γ be a regular operation on τ . Then every

 γ -preopen set is γ -open if and only if (X,τ) is γ^* submaximal.

Proof: Follows from the fact that τ_{γ} is closed under finite intersection if γ is regular

Theorem 3.24 If (X, τ) is γ^* -submaximal and $\gamma: \tau \rightarrow P(X)$ is regular, then any finite intersection of γ -preopen sets is γ preopen.

Proof:Follows from Theorem 3.23

Theorem 3.25 If (X,τ) is γ^* -submaximal and $\gamma: \tau \rightarrow P(X)$ is regular, then any finite intersection of γ -prp-open sets is γ-prp-open.

Proof: Let $\{U_i:i=1,2,...,n\}$ be finite family of γ -prp-open. Since (X,τ) is γ^* -submaximal and γ is regular so that by Theorem 3.24 we have, $\prod_{i=1}^{n} U_i \in U_i$ $PO_{Y}(X). \text{ Therefore } \bigcap_{i=n}^{n} U_{i} \subseteq int_{Y}(cl_{Y}(\bigcap_{i=n}^{n} U_{i})).$ For each i, we have $\prod_{i=n}^{n} U_{i} \subseteq U_{i}$ and thus $pint_{Y}(pcl_{Y}(\bigcap_{i=n}^{n} U_{i})) \subseteq pint_{Y}(pcl_{Y}(U_{i})).$

As
$$pint_{\gamma}(pcl_{\gamma}(U_i)=U_i, then pint_{\gamma}(pcl_{\gamma}(\bigcap_{i=n}^{n}U_i)) \subseteq \bigcap_{i=n}^{n}U_i$$

Recall that a subset M of a TS (X, τ) is called γ -preclopen if it is γ -preclosed and γ -preopen.

Theorem 3.26 In (X, τ) , let $N \subseteq X$. If N is γ -preclopen, then it is γ -prp- open but not conversely.

Proof:Obvious

Example 3.27 Let $\tau = \{X, \phi, \{p_1\}, \{p_2\}, \{p_3\}, \}$ ${p_1,p_2},{p_1,p_3},{p_2,p_3},{p_1,p_2,p_3},{p_1,p_3,p_4}$

 $\gamma(\mathbf{M}) = \begin{cases} M \cup, \{q\}, \text{ if } M = \{p\}, \{p, r, s\} \\ M, \text{ if } M \neq \{p\}, \{p, r, s\} \end{cases}$

Here $\{p_2\}$ is γ -prp-open in (X, τ) but not a γ -preclopen set **Theorem 3.28** In (X,τ) , let $N \subseteq X$, the following are *equivalent*:

(i) N is preclopen;

(ii) N is γ -prp-open and γ -preclosed.

Definition 3.29 A TS (X,τ) is called extremally γ predisconnected if the

 γ -preclosure of every γ -preopen subset of X is γ -preopen. Theorem 3.30 A TS (X,τ) is extremally γ predisconnected if and only if every γ -prp-open set is γ -preclopen.

Proof:Let M be a γ -prp-open set,then M = $pint_{\gamma}(pcl_{\gamma}(M)) = pcl_{\gamma}(M)$. So that M is γ -preclosed and combined with Theorem 3.4, we have M is γ -preclopen.

Conversely, let $M \in PO_{\gamma}(X)$. Then by Theorem 3.11(vi), pcl_{γ} (M) is γ -prp- open which is γ -preclopen by hypothesis. Hence pcl_{γ} (M) is γ -preopen.

Remark 3.31 The above discussions can be summarized in the following diagram:

 γ^* -pre-regular p-open $\rightarrow \gamma$ -preopen $\rightarrow \gamma$ -b-open

Karnatak University Journal of Science

July-September 2023, Vol. 54

Remark 3.32 The notions of γ -open(resp., γ -regular open, γ -preclosed) and γ -prp-open sets are independent of each other.

Example 3.33 Let $\tau = \{X, \phi, \{a_2\}, \{a_3\}, \{a_4\}, \{a_2, a_3\}, \{a_2, a_4\}, \{a_3, a_4\}, \{a_1, a_3, a_4\}, be a topology on <math>X = \{a_1, a_2, a_3, a_4\}$

For every{ $M \in \tau$,Define γ : $\tau \to P(X)$ by

 $\gamma(M) = M \text{ if } M = \{a_2\}, \{a_3\}$

cl(M) if $M \mid = \{a_2\}, \{a_3\}$

Here $\{a_3\}$ is a γ -o en set in (X, τ) but $\{a_3\} \notin PRPO_{\gamma}(X)$ and $\{a_1, a_2, a_3\}$ is a γ -prp-o en set in (X, τ) but $\{a_1, a_2, a_3\} \notin \tau_{\gamma}$.

Example 3.34 In Example 3.33, $\{a_3\}$ is a γ^* -regular open set in (X, τ) but

 $\{a_3\} \in / PRPO_{\gamma}(X) \text{ and } \{a_1,a_2,a_3\} \text{ is a } \gamma\text{-prp-open set in} (X,\tau) \text{ but } \{a_1,a_2,a_3\} \in / RO_{\gamma}^*(X).$

Example 3.35 In Example 3.33, $\{a_1\}$ is a γ -preclosed set in (X, τ) but not a γ -prp-open set

Example 3.36 In Example 3.27, $\{p_2\}$ is a γ -prp-open set in (X, τ) but not a γ -preclosed set

REFERENCES

- 1) S. Hussain, On Generalized Open Sets, *Hacettepe Journal of Mathematics* and Statistics, 5, 45, 1438 (2016).
- H. Ogata, Operations on topological spaces and associated topology, 36, 175 (1991).
- 3) S. Kasahara, Operation-compact spaces, Math. Japonica, 24, 97 (1979).
- D. Saravanakumar, M. N. Ganster, G. Kalaivani, and S. S. Krishnan, On (γ*,β*)-almost-pre-continuous mappings in topological spaces, *J.Egypt,Math.Soc*, 23, 180 (2015).