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A B S T R A C T

As a generalization of open sets in topological spaces, we use the notions of γ-preopen and γ-preclosed
sets [1] to introduce and study the notions of γ-prp-open sets.
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1 INTRODUCTION
Throughout the present paper, we will denote (X,τ ) as a
topological space (briefly, TS). The concept of operations
α on topological spaces was introduced by Kasahara [1].
Ogata [2] called the operation α as γ-operation and
introduced the notion τγ which is the collection of all γ-
open sets in a topological space. Recently, Sabir Hussain
introduced and studied the properties of γ-preopen and γ-
b-open sets in topological spaces.

In this paper,we introduce and explore generalized open
sets namely γ-prp- open sets in topological spaces.

2 PRELIMINARIES
Definition 2.1 [3] Let (X,τ) be a TS.An operation γ on a
topology τ is amapping from τ to P(X)withN⊆Nγ , for each
N ∈ τ , where Nγ denotes the value of γ at N. This operation
is denoted by γ : τ −→ P(X).

Its complement is called γ-closed.
Definition 2.3 [2] Let N ⊆ X, then γ-interior of N,

denoted by intγ (N) is defined as intγ (N) = { p ∈N: p ∈G ∈
τ and Gγ ⊆ N for some G }.

Definition 2.4 [2] Let N⊆X,then γ-closure of N,denoted
by clγ (M) is defined as clγ (N) = { p ∈ X: p ∈ U ∈ τ and Uγ

∩ N̸= ϕ for all U }.
Definition 2.5 [2] An operation γ on τ is regular if for

any open nbds L,M of each p ∈ X, there exists an open nbd
N of p such that Lγ ∩Mγ ⊆ Nγ .

Definition 2.6 A set M⊆ X is called
(i) γ-preclosed [1] if clγ (intγ (M))⊆M and γ-preopen if

M⊆intγ (clγ (M)).
(ii) γ ∗-regular-closed [4] if M=clγ (intγ (M)) and γ

∗ -
regular-open if M = intγ (clγ (M)).

(iii) γ-b-closed [1] clγ (intγ (M))∩ intγ (clγ (M))⊆M and
γ-b-open if M⊆ clγ (intγ (M)∪ intγ (clγ (M)).

The family of γ-open(resp.,γ-closed,γ-preopen,γ-
preclosed, γ ∗-regular open) sets of (X,τ) is denoted by τγ
(resp.,Cγ (X), POγ (X), PCγ (X), ROγ

∗ (X)).
Definition 2.7 [1] In (X,τ),let M⊆ X. Then
(1) γ-pre-closure ofM, denoted by τγ -pclγ (M) is defined

as pclγ (M) = ∩{U: M⊆ U and Uc ∈ POγ (X) }.
(2) γ-pre-interior of M, denoted by pintγ (A) is defined as
pintγ (M) = ∪{H: H⊆M and H ∈ POγ (X) }.
Theorem 2.8 [1] In (X,τ),let M⊆ X. Then:
(1) pclγ (M) = M ∪ clγ (intγ (M)) and pintγ (M) = M ∩

intγ (clγ (M)).
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(2) pclγ (pintγ (M)) = pintγ (M) ∪ clγ (intγ (M) and
pintγ (pclγ (M)) = pclγ (M) ∩ intγ (clγ (M)).

(3) Pintγ(pclγ(M)) = pintγ(bclγ(M)) = bclγ(pintγ(M)).

3 γ-PREREGULAR P-OPEN SETS
Definition 3.1 A subset M of a TS (X,τ) is said to be γ-pre-
regular p- open(briefly,γ-prp-open) if M = pintγ (pclγ (M)).

The class of γ-prp-open in (X,τ) will be denoted by
PRPOγ (X).

Definition 3.2 In (X,τ),let M ⊑X. Then M is called a γ-
prp-closed set if Mc is γ-prp-open.

Equivalently, M is called γ-prp-closed set if M =
pclγ (pintγ (M)).

The class of γ-prp-closed sets in (X,τ) will be denoted by
PRPCγ (X).

Example 3.3 Let τ = {X, ϕ , {k1}, {K2}, {k1,k2}, {k1,k3}} be
a topology on X = {k1,k2,k3}

For k2 ∈{X and M ∈ τ ,define γ : τ → P(X) by

γ(M) =

{
M, if k2 ∈ M

cl(M), if k2 /∈ M
Then τγ ={X, ϕ , {k1}, {k1,k2}, {k1,k3}}.
POγ (X)={X, ϕ , {k1}, {k2}, {k1,k2}, {k1,k3}, {k2,k3}}.
PRPOγ (X)={X, ϕ , {k1}, {k2}, {k1,k3}, {k2,k3}}.
Theorem 3.4 If M is γ-prp-open in (X,τ),then it is γ-

preopen (hence γ- b-open) but not conversely.
Proof:Let M be γ-prp-open.Then M = pintγ (pclγ (M)).
Hence pintγ (M) = pintγ (pintγ (pclγ (M))
= pintγ (pclγ (M))
= M.
Thus M is γ-preopen.
Example 3.5 In the Example 3.3, {k1,k2} is a γ-preopen

set but not a γ- prp-open set.
Theorem 3.6 If M is γ-prp-open in (X,τ),then it is γ-b-

closed but not conversely.
Proof:Let M be γ-prp-open.Then
M = pintγ (pclγ (M)).
= bclγ (pintγ (M)) (byTheorem 2.8(iii)).
= bclγ (M)(byTheorem 3.4)
Thus M is γ-b-closed.
Example 3.7 In the Example 3.3, {k3} is a γ-b-closed set

but not a γ-prp- open set.
Remark 3.8 The class of γ-prp-open sets is not closed

under finite union as well as finite intersection. It will be
shown in the following example.

Example 3.9 (1)In Example 3.3,let C = {k1} and D = {k2}
then C,D ∈ PRPOγ (X) but P ∪ Q = {k1,k2} ̸∈ PRPOγ (X).

(2) In Example 3.3,let S = {k1,k3} and T = {k2,k3} then S,T
∈ PRPOγ (X) but S ∩ T = {k3 } ̸∈ PRPOγ (X).

Theorem 3.10 In (X,τ), let R,S ⊆ X, then the following
results hold:

(i) If R⊆ S, then pintγ (pclγ (R))⊆ pintγ (pclγ (S)).
(ii) If R ∈ POγ (X), then R⊆ pintγ (pclγ (R)).
(iii) If R ∈ PCγ (X), then pclγ (pintγ (R))⊆ R.
(iv) pintγ (pclγ (R)) is γ-prp-open.

(v) If R ∈ PCγ (X), then pintγ (R) is γ-prp-open.
(vi) If R ∈ POγ(X), then pclγ(R) is γ-prp-open.
Proof: (i)Clear.
(ii) Since R⊆ pclγ (R) and let R ∈ POγ (X),then
R⊆ pintγ (pclγ (R).
(iii) Let R ∈ PCγ (X). Since pintγ (R) ⊆ R,then

pclγ (pintγ (R)⊆ R.
(iv) We have
pintγ (pclγ (pintγ (pclγ (R)) ⊆ pintγ (pclγ (pclγ (R)) =

pintγ (pclγ (R))
and pintγ (pclγ (pintγ (pclγ (R))) ⊇

pintγ (pintγ (pclγ (A)) = pintγ (pclγ (R). Hence
pintγ (pclγ (pintγ (pclγ (R))) = pintγ (pclγ (R)).

(v) Suppose that R ∈ PCγ (X). By (iii),
pintγ (pclγ (pintγ (R))⊆ pintγ (R). On the other hand,
we have intγ (R)⊆ pclγ (pintγ (R)).

So that pintγ (R) ⊆ pintγ (pclγ (pintγ (R)). Therefore
pintγ (pclγ (pintγ (R)) = pintγ (R). This shows that pintγ (R)
is γ-prp-open.

(vi) Similar to (v).
Theorem 3.11 In (X,τ), let M ⊆ X, the following are

equivalent:
(i) M is γ-prp-open;
(ii) M = pclγ (M) ∩ intγ (clγ (M));
(iii) M = [M ∪ clγ (intγ (M))] ∩ intγ (clγ (M));
(iv) M = pintγ ((bclγ (M))).
Proof:It follows fromTheorem 2.8
Theorem 3.12 In (X,τ),let N ⊆ X. Then N is γ-prp-open

if and only if it is γ-preopen and γ-b-closed.
Proof: From the theorems 3.4 and 3.6,we have that every

γ-prp-open set is γ-preopen and γ-b-closed.
Conversely, let N be γ-preopen and γ-b-closed, then
pintγ (N) = N and bclγ (N) = N.
ByTheorem 2.8 (iii), pintγ (pclγ (N) = pintγ (bclγ (N))
= pintγ (N)
= N.
Theorem 3.13 If N is γ-preclosed set in (X,τ),then the

following are equivalent:
(1) N is γ-prp-open;
(2) N is γ-preopen.
Proof:(1)−→(2):It follows from theTheorem 3.4
(2) −→(1): By hypothesis and (ii),we have pclγ (N) = N

and pintγ (N) = N
Then, pintγ(pclγ(N)) = pintγ(N) = N
Theorem 3.14 If N is γ-prp-open and a γ-closed set of a

space (X,τ),then N is γ-clopen.
Proof:By hypothesis, N = pintγ (pclγ (N)) and M =

clγ (N).
ByTheorem 2.8(ii), N = pintγ (pclγ (N))
= pclγ (N) ∩ intγ (clγ (N))
= pclγ (N) ∩ intγ (N)
= intγ (N).
Therefore, N is γ-clopen.
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Theorem 3.15 If N is γ-prp-open and a γ-open set in
(X,τ),then N is γ ∗-regular open.

Proof: Since N is γ-prp-open and γ-open, then we have
N = pintγ (pclγ (N)) and N = intγ (N).

ByTheorem 3.11,N = pintγ (pclγ (N))
= [N ∪ clγ (intγ (N))] ∩ intγ (clγ (N))
=[N ∪ clγ (N)] ∩ intγ (clγ (N))
= clγ (N) ∩ intγ (clγ (N))
= intγ (clγ (N)).
Therefore,N is γ ∗-regular open
Definition 3.16 [4] In (X,τ),let N⊆ X.Then N is called a

γ ∗-dense set if clγ (N) = X.
Theorem 3.17 If N is γ-prp-open and a γ ∗-dense set in

(X,τ),then N is
γ-preclosed.
Proof: Since N is γ-prp-open and γ ∗-dense,then N =

pintγ (pclγ (N)) and clγ (N)= X.
ByTheorem 3.11,N = pintγ (pclγ (N))
= pclγ (N) ∩ intγ (clγ (N))
= pclγ (N) ∩ intγ (X)
= pclγ (N) ∩ X
= pclγ (N).
Therefore,N is γ-preclosed.
Definition 3.18 In (X,τ),let N ⊆ X.Then N is called a γ-

rare set if intγ (N)= ϕ .
Theorem 3.19 If N is γ-preopen and a γ-rare set in

(X,τ),then N is γ-prp-open.
Proof:Let N be γ-prp-open and γ-rare set, we have
N = N ∩ intγ (clγ (N)) and intγ (N)= ϕ .
By Theorem 2.8, pintγ (pclγ (N)) = [N ∪ clγ (intγ (N))] ∩

intγ (clγ (N))= [N ∪ clγ (ϕ )] ∩ intγ (clγ (N))
= [N ∪ ϕ ] ∩ intγ (clγ (N))
= N (as N is γ-preopen).
Therefore,N is γ-prp-open.
Theorem 3.20 In (X,τ), N is γ-open subset of X, then the

following are equivalent:
(1) Is γ-prp-open;
(2) N is γ∗-regular open
Proof: (1)−→(2):Follows fromTheorem 3.15
(2) −→(1):By hypothesis and (2),we have intγ (N) = N

and intγ (clγ (N)) = N.
ByTheorem 2.8, pintγ (pclγ (N)) = [N ∪ clγ (intγ (N))] ∩

intγ (clγ (N))
= clγ (N) ∩ N pintγ (pclγ (N)) = N.
Therefore, N is γ-prp-open.
Definition 3.21 [4] In (X,τ),let N ⊆ X. Then N is called

γ ∗-submaximal if every γ ∗-dense subset of X is γ-open.
Theorem3.22 If every γ-preopen set is γ-open,then (X,τ)

is γ ∗-submaximal.
Proof: Let M be a γ-dense subset of X.Then intγ (clγ (M)

= X. So that M⊆ intγ (clγ (M)), M is γ-preopen.
Therefore, M is γ-open.
Theorem 3.23 In (X,τ),let γ be a regular operation on τ .

Then every

γ-preopen set is γ-open if and only if (X,τ) is γ ∗-
submaximal.

Proof: Follows from the fact that τγ is closed under finite
intersection if γ is regular

Theorem3.24 If (X,τ) is γ ∗-submaximal and γ : τ –> P(X)
is regular, then any finite intersection of γ-preopen sets is γ-
preopen.

Proof:Follows fromTheorem 3.23
Theorem 3.25 If (X,τ) is γ ∗-submaximal and γ : τ –> P(X)

is regular, then any finite intersection of γ-prp-open sets is
γ-prp-open.

Recall that a subset M of a TS (X,τ) is called γ-preclopen
if it is γ-preclosed and γ-preopen.

Theorem3.26 In (X,τ),let N⊆X. If N is γ-preclopen,then
it is γ-prp- open but not conversely.

Proof:Obvious
Example 3.27 Let τ = {X,ϕ ,{p1}, {p2}, {p3},

{p1,p2},{p1,p3}, {p2,p3},{p1,p2,p3},{p1,p3,p4}}

γ(M) =

{
M∪,{q}, if M = {p},{p, r,s}

M, if M ̸= {p},{p, r,s}
Here {p2} is γ-prp-open in (X,τ) but not a γ-preclopen set
Theorem 3.28 In (X,τ),let N ⊆ X, the following are

equivalent:
(i) N is preclopen;
(ii) N is γ-prp-open and γ-preclosed.
Definition 3.29 A TS (X,τ) is called extremally γ-

predisconnected if the
γ-preclosure of every γ-preopen subset of X is γ-preopen.
Theorem 3.30 A TS (X,τ) is extremally γ-

predisconnected if and only if every γ-prp-open set is
γ-preclopen.

Proof:Let M be a γ-prp-open set,then M =
pintγ (pclγ (M)) = pclγ (M). So that M is γ-preclosed
and combined withTheorem 3.4,we have M is γ-preclopen.

Conversely, let M ∈ POγ (X).Then by Theorem 3.11(vi),
pclγ (M) is γ-prp- open which is γ-preclopen by hypothesis.
Hence pclγ (M) is γ-preopen.

Remark 3.31 The above discussions can be summarized
in the following diagram:
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Remark 3.32 The notions of γ-open(resp.,γ-regular
open,γ-preclosed) and γ-prp-open sets are independent of
each other.

Example 3.33Let τ = {X,ϕ , {a2}, {a3}, {a4}, {a2,a3},{a2,a4},
{a3,a4},{a1,a3,a4}, be a topology on X = {a1,a2,a3 ,a4}

For every{M ∈ τ ,Define γ : τ → P(X) by
γ(M) =M if M = {a2 } , {a3 }
cl(M ) if M /= {a2 } , {a3 }
Here {a3} is a γ-o en set in (X,τ) but {a3} ̸∈PRPOγ (X) and

{a1,a2,a3} is a γ-prp-o en set in (X,τ) but {a1,a2,a3} ̸∈τ γ .
Example 3.34 In Example 3.33, {a3} is a γ ∗-regular open

set in (X,τ) but
{a3} ∈/ PRPOγ (X) and {a1,a2,a3} is a γ-prp-open set in

(X,τ) but {a1,a2,a3} ∈/ ROγ
∗ (X).

Example 3.35 In Example 3.33, {a1} is a γ-preclosed set in
(X,τ) but not a γ-prp-open set

Example 3.36 In Example 3.27, {p2} is a γ-prp-open set
in (X,τ) but not a γ-preclosed set
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