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A B S T R A C T

This study aims to develop a unified method for solving central-force problems, specifically the Kepler
problem, through quadratic energy decomposition and trigonometric parameterization. The results show
that this approach provides closed-form solutions for conic-section orbits, including precession effects under
perturbed and relativistic potentials, without solving differential equations.Themajor conclusion is that the
quadratic energy decomposition offers a computationally efficient and pedagogically valuable framework
for understanding both classical and relativistic orbital dynamics.
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1 INTRODUCTION

The Kepler problem, a foundational concept in celestial
mechanics and mathematical physics, describes the motion
of planets, satellites, and even electrons under a central
inverse-square force. This classical problem has been
historically solved using Newton’s laws and has evolved
through various methods, including the Lagrangian and
Hamiltonian formulations. These classical approaches are
based on solving second-order differential equations, using
conserved quantities like angular momentum and energy,
and applying symmetry techniques, such as the Laplace-
Runge-Lenz vector. While these methods are rigorous, they
can be computationally intensive, particularly when dealing
with perturbed systems or non-ideal potentials.

Recent developments in central-force dynamics have
shifted towards alternative analytical and numerical meth-
ods. Energy decompositionmethods, for example, have been
used to simplify the Kepler problem, offering closed-form
solutions that avoid solving complex differential equations.
These methods relate the radial motion of bodies to har-
monic oscillators, thereby providing an elegant solution for

orbital dynamics in both classical and relativistic contexts.
Recent work has shown that these energy decomposition
techniques can be extended to include relativistic corrections
and gravitational potential perturbations, enabling a more
unified approach to various central-force problems [1].

In addition to energy decomposition, projective trans-
formations and regularization techniques in Hamiltonian
mechanics have gained attention in recent years. These
methods help simplify the analysis of central-force systems
by transforming them into canonical coordinate spaces,
enabling exact solutions for inverse-square and inverse-
cubic forces. Such approaches also improve the treatment
of perturbations like gravitational anomalies and zonal
effects in orbital dynamics. These advanced methods play
a crucial role in making complex systems more analytically
tractable while retaining physical accuracy, particularly in
astrophysical and cosmological contexts [2].

Furthermore, modern numerical integrators have been
developed that preserve key integrals of motion, such
as energy and angular momentum, without introducing
errors like artificial precession.These new integrators ensure
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accurate long-term propagation of orbits, especially in high-
precision celestial simulations where traditional numerical
solversmay fail over extended time periods. Such integrators
are particularly useful in simulations of orbital motion in
both perturbative and relativistic regimes [3].

The relevance of the Kepler problem extends beyond
classical mechanics into cosmology and astrophysics, where
precise calculations of orbits, precession, and relativistic
corrections are critical. For example, understanding the
perihelion shift of Mercury, a direct consequence of general
relativity, requires the inclusion of relativistic corrections in
the Kepler problem.The exploration of these corrections has
led to important insights into the behavior of celestial bodies
in weak gravitational fields, further motivating the use of
algebraic and energy-based methods in orbital analysis [4].

Despite the wealth of recent advancements, many tra-
ditional methods still rely on solving differential equations
directly or require complex transformations that can be
difficult to apply. In this work, we extend energy decom-
position methods, offering a more unified and accessible
approach for solving central-force problems. We apply this
framework to classical Keplerian dynamics, inverse-square
law perturbations, and weak-field relativistic corrections.
Our approach yields closed-form expressions for orbital
motion and provides a clear, analytical foundation that
bridges the gap between classical mechanics and modern
relativistic celestial dynamics, with significant pedagogical
value.

2 MATERIALS AND METHODS
2.1 Central-Force Energy Equation
Consider a particle of mass m moving under a central
potential V(r). The conservation of total energy and angular
momentum gives:

𝐸 = 1
2𝑚 ̇𝑟2 + 𝐿2

2𝑚𝑟2 +𝑉 (𝑟) (1)

Where, .𝑟 is the radial velocity, L is the angular momentum,
and V(r) depends only on the radial distance. [5]

The effective potential is:

𝑈𝑒𝑓𝑓(𝑟) = 𝐿2

2𝑚𝑟2 +𝑉 (𝑟) (2)

Equation (1) describes the one-dimensional motion in
the radial coordinate under the influence of the effective
potential in Eq. (2). [5]
2.2 Energy Decomposition and Parameterization
Framework
We seek to rewrite Eq. (1) in the form of a quadratic energy
identity:

𝐸 = 𝛼(𝑟)
.

𝑟2 +𝛽(𝑟2)+𝐶 (3)

Where, 𝛼(r)>0 and 𝛽(r) are functions of r, and C is a
constant [6]

Defining the auxiliary constant K≡E−CK, we introduce
the parameterization:

√𝛼(𝑟).𝑟 =
√

𝑘sin𝜙,𝛽(𝑟) =
√

𝑘cos𝜙 (4)

Where,𝜑 (t) is a phase-like variable. Substituting Eq. (4) into
Eq. (3), we recover the trigonometric identity [6] :

sin2 𝜙 +cos2 𝜙 = 1 (5)

Thus, the motion is confined to a unit circle in the (.𝑟, 𝛽(r))
plane. To reconstruct the orbit, we relate 𝜑(t) to the angular
variable 𝜃 via the angular momentum conservation law:

.
𝜃 = 𝐿

𝑚𝑟2 (6)

Combining Eqs. (4) and (6), we obtain a relation between
𝑑𝜃
𝑑𝑟and known quantities, enabling integration for r(𝜃).
2.3 Main Theorem: Conditions for Trigonometric Orbit
Parameterization
Theorem 1 (Quadratic ParameterizationTheorem):

A central potential V(r) allows a trigonometric parame-
terization of radial dynamics if:
1. The total energy equation can be expressed in the form

of Eq. (3),
2. The function 𝛽(r) permits an integral relation between

𝜑 and 𝜃, allowing reconstruction of r(𝜃).
Using Eq. (6) and the parameterized form of .𝑟 from Eq.

(4), one obtains :

𝑑𝜃
𝑑𝑟 =

.
𝜃
.𝑟 = 𝐿

𝑚𝑟2 .𝑟
(7)

Substituting Eq. (4) into Eq. (7) and integrating yields the
trajectory r(𝜃), provided that 𝛽(r) is algebraically invertible
or integral.

3 RESULTS AND APPLICATIONS
3.1 Classical Kepler Potential
The classical Kepler problem involves a central potential of
the form [6]:

𝑉 (𝑟) = −𝐺𝑀𝑚
𝑟 (8)

Where, G is the gravitational constant, M is the mass of
the central body, and m is the mass of the orbiting particle.
Substituting Eq. (8) into the general energy equation (Eq.
(1)), we obtain:

𝐸 = 1
2𝑚

.
𝑟2 + 𝐿2

2𝑚𝑟2 +−𝐺𝑀𝑚
𝑟

(9)

To cast this into the quadratic form of Eq. (3), we complete
the square in 1

𝑟 . Define the parameters:

𝛼(𝑟) = 𝑚
2 ,𝛽(𝑟) = √𝐴− 𝐺𝑀𝑚2

𝑟 ,𝐶 = 0 (10)
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With appropriate choices of constants, Eq. (9) can be
rearranged as:

𝐸 = 𝛼(𝑟)
.

𝑟2 +𝛽(𝑟2) (11)

Applying the parameterization from Eq. (4):

√𝛼(𝑟).𝑟 =
√

𝑘sin𝜙,𝛽(𝑟) =
√

𝑘cos𝜙 (12)

Using angular momentum conservation from Eq. (6),
.
𝜃 =

𝐿
𝑚𝑟2 , and the chain rule, we obtain:

𝑑𝜃
𝑑𝑟 =

.
𝜃
.𝑟 = 𝐿

𝑚𝑟2 .𝑟
(13)

Substituting r from Eq. (12) into Eq. (13) and integrating
yields the classical polar-form orbit:

𝑟(𝜃) = 𝑝
1+𝑒cos𝜃 (14)

Where:

p=
𝐿2

GMm2 ,𝑒 = √1+ 2EL2

𝐺2𝑀2𝑚2
(15)

Equation (14) represents a conic section: an ellipse for
0<e<1, a parabola for e=1, and a hyperbola for e>1. This
classical result, typically derived via differential equation
integration, now emerges algebraically from the quadratic
energy identity framework.
3.2 Perturbed Potential: Inverse-Square Plus 1/r2 Term
Wenowconsider a central potential with a perturbation term
added to the classical Kepler form [7]:

𝑉 (𝑟) = −𝐺𝑀𝑚
𝑟 + 𝛼

𝑟2 (16)

Here, 𝛼 is a small parameter characterizing the strength
of the perturbation. This potential models systems with
additional short-range forces (e.g., gravitational quadrupole
corrections or classical relativistic analogues).

The effective potential becomes:

𝑈𝑒𝑓𝑓(𝑟) = 𝐿2

2𝑚𝑟2 + 𝛼
𝑟2 − 𝐺𝑀𝑚

𝑟
(17)

This can be interpreted as a redefinition of the effective
angular momentum. [7]

Let:

𝐿2 = 𝐿2 +2𝑚𝑎 (18)

Then, the energy equation can be parameterized analogously
to Eq. (9), yielding an orbit of the form:

𝑟(𝜃) = 𝑝′

1+𝑒′ cos(𝜃𝛽) (19)

Where:

𝛽 = √1+ 2ma
𝐿2 ,Δ𝜃 = 2𝜋( 1

𝛽 −1) (20)

The factor 𝛽≠1 leads to a precession of the orbit, with the
angular shift per revolution given byΔ 𝜃.This resultmatches
perturbative treatments found in classical mechanics, but
here it emerges directly from energy decomposition.
3.3 Quadratic Central Potential
Now consider a central potential of the form [8]:

𝑉 (𝑟) = 1
2𝑘𝑟2 (21)

This models harmonic-like restoring forces (e.g., gravita-
tional or electrostatic fields with linear displacement effects).
Substituting Eq. (21) into the energy equation (Eq. 1), we
obtain:

𝐸 = 1
2𝑚 ̇𝑟2 + 𝐿2

2𝑚𝑟2 + 1
2𝑘𝑟2 (22)

Following the quadratic energy identity framework, we
express the radial solution as a bounded oscillatory orbit [8]:

𝑟(𝜃) 𝐿𝜔
√𝐸𝑘 +√𝐸2 −𝐿2𝜔2 cos(2𝜃) (23)

Where, 𝜔 = √ 𝑘
𝑚 . These orbits are closed, representing

elliptical or Lissajous-type trajectories with periodic radial
oscillations. The factor of 2𝜃 in the cosine implies that the
orbit completes two radial cycles per revolution, a hallmark
of quadratic central forces.

Such systems are ideal test cases in orbital mechanics due
to their analytical tractability and harmonic symmetry.
3.4 First-Order Relativistic Correction (Schwarzschild
Approximation)
The Schwarzschild approximation describes the solution to
Einstein’s field equations for the gravitational field outside a
spherical mass and is used to account for relativistic effects
in orbital dynamics (e.g., the perihelion shift).

To model relativistic effects in weak gravitational fields
(e.g., near a massive star), we add a small correction to the
classical potential. In the Schwarzschild approximation, the
central potential becomes [8]:

𝑉 (𝑟) = −𝐺𝑀𝑚
𝑟 + 𝛽

𝑟3 (24)

Where,𝛽 = GML2

𝑐2𝑚 , and c is the speed of light. This term
accounts for general relativistic corrections at first order
and is responsible for observable effects such as perihelion
precession.

Applying the energy decomposition method, the result-
ing orbit takes the approximate form:

𝑟(𝜃) ≈ 𝑝
1+𝑒cos [(1−𝜀)𝜃] (25)
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Figure 1: Classical conic-section orbit 𝑟(𝜃) = 𝑝
1+𝑒cos𝜃 , derived from the inverse-square law potential using quadratic energy

decomposition. Different conic shapes are shown for varying eccentricity e.

Figure 2: Processing orbit under perturbed central potential 𝑉 (𝑟) = − 𝐺𝑀𝑚
𝑟 + 𝛼

𝑟2 . The non-integer angular frequency 𝛽 induces orbital
precession visible after successive revolutions.
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Figure 3:Closed elliptical orbit in a quadratic central potential 𝑉 (𝑟) = 1
2 𝑘𝑟2. Radial oscillations occur with a frequency twice the angular

rate, forming bounded, symmetric trajectories.

with:

𝜀 ≈ 3𝐺𝑀
𝑐2𝑎(1−𝑒2) (26)

Here, a is the semi-major axis and eee is the orbital eccentric-
ity. Equation (25) shows that the angular coordinate includes
a correction factor (1−𝜀), leading to gradual advance of the
perihelion with each revolution.

This formulation reproduces the classical result for Mer-
cury’s orbital precession and aligns with general relativity
predictions [4], [5]. Notably, the result is derived here via the
same unified energy identity framework without invoking
full relativistic field equations.
3.5 Phase-Space Structure and Orbit Classification
To obtain a better understanding of how central-force
systems work, we look at the radial of the phase-space (r,.𝑟). This allows us to recognize the geometry of orbital forms
according to their total energy E.

Orbit types predicted by the quadratic energy formulation
are:

• Bound Orbits (E<0) — these types are characterized
by closed or periodic orbits such as elliptical orbits
in a Kepler potential and/or bounded oscillations in
a quadratic potential. Centered on the elliptical stable
equilibrating points, you can see elliptical loops in the
phase-space plots.

• Marginal Orbits (E=0) — these orbit types can be
described by parabolic trajectories, which act as a
borderline between bound and unbound or conflated.

• Unbound Orbits (E>0) — these exhibit phase-space
hyperbolic trajectories such as open curves with
unbound forms and positive radial velocities.

• Processing Orbits — previously described (non-open
orbital forms with bounded radial motion) exhibit a
slight perturbation from relativistic effects. This pro-
duces a stable but non-reclosed phase-space wherein
the orbit does not lead back to its aspirating phase.

• Oscillatory Orbits — under quadratic central forces,
radial motion is strictly periodic, with radial and
angular frequencies related through integer ratios.
These appear as nested closed curves in phase portraits.

Phase-space analysis reinforces the generality of the
quadratic energy identity approach by illustrating consistent
behavior across a range of potentials. The orbital character
(bound, unbound, processing) can be directly inferred from
the geometric features of these trajectories.

3.6 Comparison with Traditional Methods
Here, we compare Newtonian mechanics, Lagrangian
mechanics, Hamiltonian mechanics, and symmetry
methods in the context of solving central-force problems.
Each method has its strengths and weaknesses, and their
differences lie in how they describe the system’s dynamics,
the kind of problems they can handle, and the mathematical
formulation they rely on. We also discuss how the quadratic
energy decompositionmethod compares to these traditional
approaches.

1. Newtonian Mechanics
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Figure 4: Relativistic orbit exhibiting perihelion precession.The gradual rotation of the elliptical path arises due to the 1/r3 correction term
in the effective potential.

Figure 5: Phase-space diagrams (r,.𝑟) illustrating orbit types: (a) bound elliptical orbit, (b) marginal parabolic escape, (c) unbound
hyperbolic trajectory, (d) oscillatory motion in quadratic potential, and (e) precessing orbit under perturbation.
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• Mathematical Formulation: In Newtonianmechan-
ics, the motion of a body is described using
Newton’s second law F = ma, where F is the force
acting on the body, m is its mass, and a is its
acceleration. For a central-force system like gravity,
this leads to the equation:

𝑚𝑑2𝑟
𝑑𝑡2 = −𝐺𝑀𝑚

𝑟2

Where, r is the radial distance, and G andM are the
gravitational constant and the mass of the central
body.

• Differences: Newtonian mechanics provides
a direct, force-based approach to solving the
equations of motion. It works well for simple
systems but becomes computationally expensive for
complex systems, requiring numerical integration
to solve second-order differential equations,
particularly when perturbations or relativistic
corrections are involved.

• Quadratic Energy Decomposition Advantage:
Unlike Newtonian mechanics, the quadratic energy
decomposition method transforms the problem
into algebraic forms, avoiding the need for solving
second-order differential equations. This makes
it computationally efficient and easier to apply,
especially when dealing with complex systems.

2. Lagrangian Mechanics

• Mathematical Formulation: Lagrangian mechanics
is based on the Lagrangian function, L = T − V,
where T is the kinetic energy and V is the potential
energy. The equations of motion are derived using
the Euler-Lagrange equation:

𝑑
𝑑𝑡 (𝜕𝐿

𝜕 .𝑟 )− 𝜕𝐿
𝜕𝑟 = 0

For a central-force system, this leads to the equation
for radial motion, which involves both kinetic and
potential energy terms.

• Differences: Lagrangian mechanics provides a vari-
ational approach, emphasizing energy and action,
rather than forces. However, it still requires solving
second-order differential equations. While power-
ful, it can become complex for systems with mul-
tiple perturbations or when relativistic corrections
are included.

• Quadratic Energy Decomposition Advantage: The
quadratic energy decomposition method avoids
these complications by simplifying the problem into
algebraic equations. It directly relates the motion to
energy terms and can easily handle perturbations
and relativistic corrections without the need for
Lagrangian formulations.

3. Hamiltonian Mechanics

• Mathematical Formulation: Hamiltonian mechan-
ics extends the Lagrangian formulation by express-
ing the system’s total energy H = T + V in
terms of generalized coordinates andmomenta.The
equations of motion are derived from Hamilton’s
equations:

.𝑟 = 𝜕𝐻
𝜕𝑝𝑟

,
. 𝜕𝐻

𝜕𝑝𝑟𝑝𝑟

Where, 𝑝𝑟 = 𝑚.𝑟 is the generalized momentum.
• Differences: Hamiltonian mechanics is more

abstract and formal than Lagrangian mechanics,
and it is particularly useful in quantum mechanics.
It involves transforming the system into generalized
coordinates and momentum, which can be
cumbersome for simple central-force problems
and complex when dealing with perturbations or
relativistic effects.

• Quadratic Energy Decomposition Advantage: The
quadratic energy decomposition method simplifies
the system by directly solving for the radial
motion algebraically, without requiring the use of
generalized coordinates or momenta. This makes it
easier to apply and more computationally efficient.

4. Symmetry Methods (e.g., Laplace-Runge-Lenz Vector)

• Mathematical Formulation: Symmetry methods,
such as the Laplace-Runge-Lenz vector, utilize
conserved quantities (e.g., angular momentum and
energy) to simplify the analysis of central-force
problems. The Laplace-Runge-Lenz vector is given
by:

⃗⃗ ⃗⃗ ⃗⃗𝐴 = ⃗𝑝 × ⃗⃗⃗⃗⃗𝐿− 𝐺𝑀𝑚
𝑟 ̂𝑟

Where, ⃗⃗⃗ ⃗⃗𝐿 = ⃗𝑟 × ⃗𝑝 is the angular momentum.
• Differences: Symmetry methods provide elegant

solutions for systems with inverse-square law
potentials but are limited to specific cases like the
Kepler problem. These methods are geometrically
insightful but cannot easily handle more complex
systems with perturbations or relativistic effects.

• Quadratic Energy Decomposition Advantage: The
quadratic energy decomposition method extends
the concepts of symmetry by applying them to
a wider range of central-force systems, including
those with perturbations and relativistic correc-
tions. It provides a generalized solution that works
for more diverse potentials while maintaining the
simplicity of symmetry-based approaches.
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4 CONCLUSION
This research in central-force dynamics education develops
a unified analytical framework based on energy quadrature
andparametric trigonometric functions.After reformulating
the energy equation, this study in orbit theory derives a
general theorem that provides exact algebraic expressions for
a broad class of orbits, applicable to a variety of potential
energy functions, including but not limited to classical,
perturbed, and relativistic potentials.

The research successfully demonstrates that:

• The parametrization technique used is consistent with
classical Keplerian orbits, which follow conic section
trajectories.

• It is shown that the precession of orbits due to classical
gravitational spheres of mass is a verifiable prediction,
requiring no long-term perturbation theory or the
assumption of permanent energy loss.

• Quadratic potentials result in bounded orbits with
periodic temporal behavior.

• First-order general relativistic corrections are sufficient
to explain perihelion advance.

• Additionally, the construction of phase-space portraits
provides a rich visualization of the geometric proper-
ties underlying the orbits.

This work bridges the core concepts of classical mechanics
with classical mathematical physics, offering an analytical
framework that contrasts with previous approaches, partic-
ularly those focused on discretizing classical mechanics. It
presents a predominantly geometric pedagogical framework
for understanding central-force dynamics.
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7 NOMENCLATURE
• r : Radial distance between two bodies in a central-

force system.

• r : Radial velocity (time derivative of rrr).
• 𝜃 : Angular coordinate, usually in the plane of motion

(polar angle).
•

.
𝜃 : Angular velocity (rate of change of 𝜃�𝜃).

• L: Angular momentum of the system, given by L =
mr2

.
𝜃.

• E : Total energy of the system, E=T+V(r), where T is
kinetic energy andV(r) is potential energy.

• T : Kinetic energy, T = 12m.r2.
• V(r) : Potential energy function, specific to the central-

force problem (e.g., gravitational potential).
• m : Mass of the orbiting body.
• M : Mass of the central object (e.g., Sun or Earth).
• G : Gravitational constant.
• Veff(r) : Effective potential, Veff(r) = V(r) + 2mr2L2.
• e : Orbital eccentricity, 0≤e<1 for elliptical orbits.
• a : Semi-major axis of the orbit (ellipse).
• b : Semi-minor axis of the orbit.
• p : Semi-latus rectum, related to the size of the ellipse.
• 𝛼: Perturbation parameter in the potential (such as a

1/r2 term in modified central forces).
• C : Constant of integration, often representing total

energy.
• 𝜔: Angular frequency of oscillatorymotion (in the case

of harmonic potentials).
• 𝜙(t) : Phase-like variable in the trigonometric

parametrization of the radial motion.
• h : Specific angular momentum, h = r2

.
𝜃.

• Δ𝜃: Precession or angular shift in perturbed orbits
(used in orbital precession studies).

• 𝛾: Gravitational parameter, 𝛾 = GM.
• rs: Schwarzschild radius (used in relativistic correc-

tions).
• c : Speed of light, important in relativistic corrections

for orbital motion.
• 𝜀 : Perturbation parameter used in weak-field relativis-

tic expansions.
• 𝛿: Correction term, often used in perturbative analyses

of orbital dynamics.
• 𝛽(r) : Function used in trigonometric parameteriza-

tion, relates radial motion to angular variables.
• 𝜏 : Orbital period, related to the semi-major axis by

Kepler’s third law.
• 𝜉 : Additional variable for specific potentials or

auxiliary parameters.
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