Karnatak University Journal of Science

Volume: 56 Issue: 4

  • Open Access
  • Original Article

Revisiting the Kepler Problem: A Mathematical Treatment Using Quadratic Energy Identities

Amitabh Kumar 1,*

1Research Scholar, Department of Mathematics, V.K.S.U, Ara, Bihar (India)
 

∗ Corresponding author.
Amitabh Kumar
[email protected]

Year: 2025, Page: 1-9, Doi: https://doi.org/10.61649/kujos/v56i4.25.19

Received: Nov. 30, 2025 Accepted: Dec. 24, 2025 Published: Dec. 30, 2025

Abstract

This study aims to develop a unified method for solving central-force problems, specifically the Kepler problem, through quadratic energy decomposition and trigonometric parameterization. The results show that this approach provides closed-form solutions for conic-section orbits, including precession effects under perturbed and relativistic potentials, without solving differential equations. The major conclusion is that the quadratic energy decomposition offers a computationally efficient and pedagogically valuable framework for understanding both classical and relativistic orbital dynamics.

Keywords: central force; Kepler’s problem; trigonometric parameterization; orbital mechanics; energy decomposition; mathematical physics

References

  1. Peterson JTA, Majji M, Junkins JL. Projective Transformations for Regularized Central Force Dynamics: Hamiltonian FormulationarXiv preprint. 2025. Available from: https://arxiv.org/abs/2506.22681

  2. Cieśliński JL, Jurgielewicz M. An Explicit Integrator Uniform in the True Anomaly and Exactly Preserving All Integrals of Motion in the Three-Dimensional Kepler ProblemarXiv preprint. 2025. Available from: https://arxiv.org/html/2512.12099v1

  3. Boscaggin A, Feltrin G, Papini D. Bifurcation from Periodic Solutions of Central Force Problems in the Three-Dimensional SpacearXiv preprint. 2025. Available from: https://arxiv.org/abs/2506.05842

  4. Oliveira Cony J, Farina C. On the Perturbed Harmonic Oscillator and Celestial MechanicsarXiv preprint. 2025. Available from: https://arxiv.org/abs/2510.25981

  5. Goldstein H. Classical Mechanics (2nd ed.). Addison-Wesley. 1980.

  6. Arnold VI. Mathematical Methods of Classical Mechanics. Springer. 1978.

  7. Boscaggin A, Feltrin G, Papini D. Bifurcation from periodic solutions of central force problems in the three-dimensional spacearXiv preprint. 2025.

  8. Misner CW, Thorne KS, Wheeler JA. Gravitation. W. H. Freeman. 1973.

Cite this article

Amitabh Kumar. Revisiting the Kepler Problem: A Mathematical Treatment Using Quadratic Energy Identities. Karnatak University Journal of Science 56(4), (2025), 1–9

Views
10
Downloads
4
Citations